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Transition from dendritic to planar growth and banded structure formation
in rapidly solidified alloys

Massimo Conti
Dipartimento di Matematica e Fisica, Universita` di Camerino and Istituto Nazionale di Fisica della Materia, 62032 Camerino, Italy

~Received 20 March 1998!

To study the formation of the so-calledbanded structures, we simulated the rapid directional solidification
of a binary alloy in two dimensions using the phase-field model. We found that an oscillatory instability of the
solidification front, driven by the loss of interfacial equilibrium, forces the interface velocityv and temperature
TI to describe an orbit in the (TI ,v) plane. In the low-velocity portion of the cycle the planar front breaks into
a dendritic pattern, resulting in a strong solute microsegregation. As a consequence, the solidified region shows
a highly irregular solute distribution. At high velocities the dendritic pattern is suppressed and the solid phase
grows with uniform composition. Due to the fast transients of the process our results, which reflect the full
time-dependent interface dynamics, show only a qualitative agreement with the phenomenological model of
Carrard et al. @Acta Metall. Mater.40, 983 ~1992!#, which is based on a quasistationary approximation.
@S1063-651X~98!00111-1#

PACS number~s!: 81.10.Aj, 05.70.Ln, 64.70.Dv
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I. INTRODUCTION

In rapidly solidified alloys, at growth rates close to th
absolute stability limit, a different and unexpected micr
structure has been observed, consisting of alternating
and light bands parallel to the solidification front. In th
so-calledbanded structure@1–4# the dark bands are forme
of periodic cells or dendrites, growing antiparallel to the h
flux direction. At eutectic composition, the typical lamell
structure has also been observed. The light bands sho
uniform composition, equal to the nominal concentration
the alloy. The total band spacing ranges from 0.3 to 1.5mm.
The physical origin of the banded structures represented
intriguing problem that remained unsolved for several yea
as they were not expected within the classic Mullins-Seke
analysis@5#. Decisive progress was achieved when the lin
stability analysis was revisited by Coriell and Sekerka@6#:
To account for nonequilibrium effects such as solute tr
ping at the moving interface, they introduced a veloci
dependent segregation coefficientk(v), defined as the ratio
cs /cl of the solute concentration in the growing solid to th
in the liquid at the interface. Subsequently, Merchant a
Davis @7# incorporated into the problem the results of t
continuous growth model of Aziz@8# and Aziz and Kaplan
@9#, allowing the segregation coefficientk and the interface
temperatureTI to depend on the interface velocityv in a
thermodynamically consistent way. These studies led to
identification of an oscillatory instability characterized by
infinite wavelength along the solid-liquid front; it was argu
that this instability should be responsible for the band form
tion @10#. The approach to the problem was refined by Hu
ley and Davis@11# and Karma and Sarkissian@12#, who re-
laxed the hypothesis of infinite thermal diffusivity an
accounted for the effects of the latent heat diffusion. T
most relevant results they achieved evidenced a reductio
the parameters range where the oscillatory instability sho
occur; moreover, the release of the latent heat at the inter
drives a restabilization mechanism at zero wave number.
PRE 581063-651X/98/58~5!/6101~8!/$15.00
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merical simulations, conducted in one dimension with bo
the Green’s functions technique@13# and the phase-field
model @14#, showed that the oscillatory instability actual
leads, in a nonlinear regime, to time-periodic changes in
interface velocity and interface temperature, which reflec
periodic variations of the solute concentration along
growth direction.

While the periodicity of the banded structure is clea
related to the oscillatory instability of the solidification fron
to explain the emergence of a dendritic pattern, respons
for the microsegregation characteristics of the dark band
wider perspective was required and the problem had to
addressed at least in two dimensions. Carrardet al. @10# pro-
posed a phenomenological model describing the formatio
the banded structure as a periodic breakdown between
dritic and planar front growth. As they observed, in a ran
of interfacial temperatures rapid solidification can proceed
stable and steady conditions at two distinct velocities, co
sponding to the dendritic branch of the diffusional mod
~lower value! and to the planar growth branch~higher value!.
At intermediate velocity values the driving force for solid
fication ~the dynamic undercooling! is a decreasing function
of the associated flux~the growth rate!, resulting in unstable
planar solutions. When the isotherm velocity is fixed in th
region steady growth is prevented and the solidification fr
undergoes periodic transitions between the planar and
dritic branches. Starting from the above considerations,
authors estimated the width of the dark and light bands
their predictions were in agreement with the experimen
data. However, detailed information on the time-depend
dynamics of the solidification pattern, which results in t
formation of the banded structure, is still lacking.

In the present study the rapid solidification of a bina
alloy, driven by a moving temperature field, is simulated
two dimensions through the phase-field model. Due to
merical tractability, the effect of the latent heat diffusion
neglected; nevertheless, we hope to capture the most rele
characteristics of the process. In a region of the parame
space the oscillatory instability of the solidification fro
6101 © 1998 The American Physical Society
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6102 PRE 58MASSIMO CONTI
forces the interface velocity and temperature to follow
cycle in the (TI ,v) plane. In the low-velocity portion of the
cycle the planar front breaks into a dendritic pattern, res
ing in strong and irregular solute microsegregation. At h
velocity the process enters the absolute stability region
the dendritic pattern is suppressed: As a consequence
solid phase grows with uniform composition. The results
our simulations show a qualitative agreement with the p
ture of the process given by Carrardet al. @10#; however, we
detected also significant deviations whose origin will be a
lyzed and discussed.

The scheme of this paper is as follows. In Sec. II t
governing equations of the model will be presented. In S
III details of the numerical method will be given. In Sec. I
the results of the numerical simulations will be presented
discussed. The conclusions will follow in Sec. V.

II. PHASE-FIELD MODEL

The directional solidification of an ideal solution of com
ponentsA ~solvent! and B ~solute! is described in terms o
the scalar phase fieldf, the local solute concentrationc, and
temperatureT. The field f is an order parameter assumin
the valuesf50 in the solid andf51 in the liquid; inter-
mediate values correspond to the interface between the
phases. The model is developed starting from an entr
formulation@15# and follows the lines suggested by Wheel
Boettinger, and McFadden@16,17#, Caginalp and Xie@18#,
and Caginalp and Jones@19#. A similar version was the basi
of previous numerical studies conducted in both one and
dimensions@20–23#. Full details of the derivation are pre
sented elsewhere@24# and for the sake of conciseness w
shall give below only a short review. As a starting point
entropy functional is defined as

S5E Fs~e,f,c!2
e2

2
u“fu2Gdv, ~1!

where integration is performed over the system volume. T
last term in the integrand is a gradient correction to the th
modynamic entropy densitys, which depends on the interna
energy densitye and on the concentration and phase fie
through the thermodynamic relations

]s

]e
5

1

T
,

]s

]c
5

mA2mB

T
,

~2!
]s

]f
52

1

T

]

]f
@~12c!mA1cmB#,

wheremA andmB are the chemical potentials of the solve
and the solute, respectively. A conservation law governs
solute transport

ċ52“•Jc . ~3!

To ensure that the local entropy production is always po
tive, the solute flux can be written in a simple form as

Jc5Mc“
dS
dc

, ~4!
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while the nonconserved dynamics of the phase fieldf is
expressed through

ḟ5Mf

dS
df

, ~5!

whereMc andMf are positive constants.
Assuming a double-well Ginzburg-Landau free energy

the pure constituents and evaluating the functional der
tives gives

]f

]t
5Mf@e2¹2f2~12c!H̃A~f,T!2cH̃B~f,T!#, ~6!

]c

]t
52“•H Dcc~12c!

vm

R
@H̃A~f,T!2H̃B~f,T!#“f

2Dc“c1Dcc~12c!
vm

R
G̃~f,T!“TJ . ~7!

In Eqs.~6! and~7! R is the gas constant andvm is the molar
volume. Dc is the solute diffusivity defined asDc

5(McR)/@vmc(12c)#. The functionH̃A(f,T) is defined as

H̃A~f,T!5
dGA~f!

df
2

dp~f!

df
LA

T2TA

TTA , ~8!

where

GA~f!5 1
4 W̃Af2~12f!25W̃Ag~f! ~9!

is a symmetric double-well potential with equal minima
f50 and 1, scaled by the positive well heightW̃A. LA and
TA are the latent heat per unit volume and the melting te
perature of the pure componentA; choosing the function
p(f) as p(f)5f3(10215f16f2), the condition is en-
forced that the bulk solid and liquid are described
f50 and 1, respectively, for every value of temperatu
@25#.

Equations~8! and ~9! still hold for H̃B(f,T) andGB(f)
if all the material parameters labeled with the superscripA
are replaced with the ones related to theB species. The func-
tion G̃(f,T) is defined as

G̃~f,T!52
p~f!

T2 ~LA2LB!. ~10!

To allow for different diffusivities in the solid and liquid
phases in the followingDc will be taken as Dc5Ds
1p(f)(Dl2Ds), Dl and Ds being the diffusivities in the
liquid and in the solid, respectively.

As we neglect the latent heat diffusion, the temperat
field is decoupled from the phase and concentration fie
and is represented as a traveling wave moving towards
positive x direction with uniform gradientG̃ and constant
velocity Ṽ0 :

]T

]t
52Ṽ0

]T

]x
52Ṽ0G̃. ~11!
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PRE 58 6103TRANSITION FROM DENDRITIC TO PLANAR GROWTH . . .
Equations~6!, ~7!, and~11! will be rephrased scaling length
to some reference lengthj and time toj2/Dl . Allowing Mf

to depend on the local composition asMf5(12c)Mf
A

1cMf
B and following the lines suggested by Warren a

Boettinger@20# to associate the model parameters with
material properties, the governing equations become

]f

]t
5@~12c!mA1cmB#

3@¹2f1~12c!QA~T,f!1cQB~T,f!#, ~12!

]c

]t
5“•$l~f!“c2c~12c!l~f!@HA~f,T!2HB~f,T!#

3“f2c~12c!l~f!G~f,T!“T%, ~13!

]T

]t
52V0

]T

]x
52V0G, ~14!

where

HA,B~f,T!5WA,B
dg~f!

df
2LA,B

vm

R

dp~f!

df

T2TA,B

TTA,B

5
vm

R
H̃A,B~f,T!, ~15!

QA,B~f,T!52
j2

~hA,B!2

dg~f!

df

1
1

6&

j2LA,B

sA,BhA,B

T2TA,B

T̄I

dp~f!

df
, ~16!

G~f,T!5
vm

R
G̃~f,T!, ~17!

l~f!5
Ds

Dl
1p~f!S 12

Ds

Dl
D , ~18!

V05Ṽ0

j

Dl
, G5G̃j. ~19!

In Eq. ~16! sA,B,hA,B indicate the surface tension and th
interface thickness of the pure componentsA andB, respec-
tively. T̄I is the initial ~equilibrium! interface temperature
The model parametersmA,B,WA,B depend on the physica
properties of the alloy components through

mA,B5
bA,BsA,BTA,B

DlL
A,B , WA,B5

12

&

vm

R

sA,B

TA,BhA,B , ~20!

wherebA,B is the kinetic undercooling coefficient of pureA
or B, which relates the interface undercooling to the interfa
velocity v throughv5bA,B(TA,B2TI).

Anisotropy of surface energy can be accounted for
allowing the parametere to depend on the angleu, defined as
the angle between the normal to the interface and a fi
direction, thex axis in our calculations. We assume a depe
e

e

y

d
-

dencee(u)5 ē(11g cos 4u)5 ēh(u), enforcing a fourfold
symmetry;g specifies the intensity of the anisotropy. Equ
tion ~12! is modified as

]f

]t
5@~12c!mA1cmB#

3H“•@h2~u!“f#1
]

]y S h~u!h8~u!
]f

]x D
2

]

]x S h~u!h8~u!
]f

]y D
1~12c!QA~T,f!1cQB~T,f!J . ~21!

To conduct the numerical simulations we referred to
phase diagram of an ideal solution of silicon~solvent! and
germanium~solute!, using the data summarized in Table
and the solute diffusivity in the solid phase was estimated
Ds510263Dl . However, due to limitations of computa
tional resources, we were forced to use some approximat
elucidated below.

In two dimensions the numerical cost of the solution
dramatically dependent on the interface thickness, increa
ash24. In this study, along the lines suggested by Whee
Murray, and Schaefer@26# and Caginalp and Socolovsk
@27#, the value selected for the interface thickness (hA,B

54.231026 cm) is small compared to the lowest geomet
scale that characterizes the process, namely, the radiu
curvature of the dendrite tip and, nevertheless, more than
times greater than the actual values.

As the diffusivities of the phase and the concentrat
fields are quite different, Eqs.~13! and ~21! should be dis-
cretized with different resolution in the time domain, wi
the finer grid fixing the numerical cost. To overcome th
difficulty and to allow a coarser time grid, we decided
reduce the diffusivity of the phase field in Eq.~21!, choosing
for bA,B values about 10 times lower than realistic one
namely,bA513.48 cm s21 K21 andbB516.91 cm s21 K21.
Fixing the surface tension assA53.94931025 J/cm2 and
sB52.80631025 J/cm2 and with a length scalej52.1
31024 cm, the model parameters becomeWA50.073 51,
WB50.072 62, andmA5mB521.416.

III. NUMERICAL METHOD

Equations~13!, ~14!, and ~21! have been solved in the
computational domain 0<x<xm , 0<y<ym , with xm
57.16 andym52.40. For the phase and concentration fie
we imposed cyclic boundary conditions aty50, ym and flux-

TABLE I. Material parameters for the Si-Ge alloy.

Parameter Silicon Germanium

Melting temperature~K! 1693 1218
Latent heat~J/cm3! 4208 2698
Molar volume~cm3/mole!a 12.02 13.64
Dl ~cm2/s! 1025 1025

aAn average value of 12.96 has been taken.
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6104 PRE 58MASSIMO CONTI
less conditions atx50, xm . Transparent conditions wer
chosen for the temperature atx50, xm . An explicit Euler
integration scheme was employed to advance the solu
forward in time and second-order central differences w
used to discretize the Laplace operator. To ensure an a
rate resolution of both the phase and the concentration
files the grid spacing was selected asDx5Dy5831023 and
a time stepDt53.531027 was required for numerical sta
bility. The process was followed up to a timetmax514
31023, resulting in 40 000 time steps for each simulation
required more than 24 h on a workstation with a single p
cessor operating at about 30 Mflops. To verify the cons
tency of the numerical scheme, at each time step the so
conservation was checked and in all the simulations w
verified within 0.01%. The initial temperature profile is d
fined as

T~x,0!5T̄I1G~x2x0!. ~22!

A phase boundary at temperatureT̄I separates a solid regio
(x,x0 , f50, c5c2`) from the liquid region (x.x0 , f
51, c5c1`); the initial concentration values in the tw
phases correspond to equilibrium atT5T̄I . Then the tem-
perature profile is pulled towards the positivex direction
starting solidification. As the process enters the oscillat
regime, a periodic corrugation is forced at timet* on the
planar interface located atxf(y,t* )5x* ; the corrugation, of
the form xf(y,t* )5x* 1A sin(2pfy/ym), with A50.05 and
f 516, is sufficient to activate the two-dimensional dynam
and the banded structure formation.

IV. FRONT DYNAMICS
AND BANDED STRUCTURES FORMATION:

RESULTS OF THE NUMERICAL SIMULATIONS

A. One-dimensional solution of the model

The loss of interface stability is expected when the i
therm velocity is fixed in the region of positive slope of th
TI(v) curve, corresponding to the unstable planar grow
branch. Then, to determine the range of parameters w
bands formation could occur, we characterized the o
dimensional dynamics of the process.

The initial concentration of the alloy was set toc2`

50.046 842 in the solid phase andc1`50.117 54 in the
liquid phase, corresponding to an equilibrium temperat
T̄I51660 K. To force steady growth we fixed the tempe
ture gradient just above the stability limit, determined e
pirically for each simulation. In these conditions, after
initial transient, solidification proceeded at a constant r
and with uniform concentrationc1` in the solid phase. The
solute segregation on the moving front was evaluated
computing the minimum and maximum valuescs* ,cl* of the
solute concentration across the interface and defining the
tition coefficient ask(v)5cs* /cl* and the interface tempera
ture was determined by interpolating the temperature fiel
x(f50.5,t).

Figure 1 shows the partition coefficient versus the grow
velocity v. The solids circles refer to the results of th
present simulations, while the solid line is drawn accord
to the predictions of the continuous growth model in t
n
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limit of very dilute solutions, which give

k~v !5
ke1v/vd

11v/vd
. ~23!

Hereke is the equilibrium segregation coefficient andvd is a
diffusional velocity given byvd5D/a, D being an interface
diffusivity anda the width of the phase transition layer. Th
best fit was found atvd534, which is a reasonable valu
referring to the actual values of the interface solute diffus
ity and interface thickness.

In Fig. 2 we show the dependence of the interface te
perature on velocity~solid circles! along with the results of
the continuous growth model~solid line! expressed by

FIG. 1. Partition coefficientk(v) for the one-dimensional solu
tion of the phase-field model~dots! and as predicted by the continu
ous growth model withke50.398 andvd534 ~solid line!.

FIG. 2. Interface temperature versus interface velocity for
one-dimensional solution of the phase-field model~dots! and pre-
diction of the continuous growth model~solid line!.
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TI~v !5TA1
mlcl

12ke
$12k1@k1~12k!x# ln~k/ke!%2

v
bA ,

~24!

whereml is the slope of the~linearized! equilibrium liquidus
line. The parameterx, ranging from 0 to 1, describes th
extent of free-energy dissipation due to solute drag across
interface@28#. With ml52280.7 the curve is drawn choos
ing x50.65. We found that the descending branch of
curve better fits the phase-field results with an undercoo
coefficient bA510 slightly lower than the nominal valu
bA513.48. Notice that Eq.~24! is obtained starting from a
linearized phase diagram and in the limit of low solute co
centration, so we do not expect a sharp agreement betw
the two sets of data.

The positive slope branch of theTI(v) dependence ex
tends up tov5300, where the maximum is found. Choosin
the isotherm velocityV0 in this region and a temperatur
gradient below the stability limit should result in an oscill
tory dynamics of the solidification front. This prediction
confirmed in Fig. 3, where the interface velocity is rep
sented versus time forV05247.5 andG510 K; the process
never reaches a steady regime and the interface velocity
tinuously oscillates around the average valueV0 .

B. Two-dimensional dynamics: Transition to dendritic growth
and banded structure formation

To investigate the growth of the banded structure, follo
ing the indications of the previous results, we fix the sa
operating point, i.e.,c1`50.117 54, c2`50.046 842, T̄I
51660 K, V05247.5, andG510 K. The anisotropy param
eter is selected asg50.04. The perturbation is injected o
the planar front after the first peak of the interface velocity
t* 51.8231022, with the front located atx* 52.52. As it is
the beginning of the two-dimensional dynamics in which
are now interested, henceforth the zero of the time axis
be shifted att* .

FIG. 3. Periodic variation of the interface velocity versus tim
for the one-dimensional solution of the phase-field model.
he
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Solidification proceeds characterized by large and p
odic variations of the total growth rate, as shown in Fig. 4
is worth observing~see Fig. 3 for a comparison! that the
oscillatory dynamics is essentially the same in one as we
in two dimensions, with the same period of the oscillation
the only significant difference we could detect is the slig
fluctuation of the amplitude of the peaks in the tw
dimensional solution.

Figure 5 is the space-time portrait of the solidificatio
front, which is identified atz(y,t)5x(f50.5,y,t). We
show 100 snapshots ofz(y,t) equally spaced in time; the
first and the last curves from the bottom are taken att51.4
31024 and 1.431022, respectively. To focus on the two
dimensional dynamics we represent, along thex direction,
only a section of the computational domain, fromx5x*
20.16 ~the zero of the vertical scale! to x5xm . The initial
perturbation is injected in the high-velocity portion of th
cycle and, as shown by the figure, is rapidly reabsorbed.
interface slows down and planar growth proceeds until, n
the minimum of the interface velocity, the front breaks into
pattern that still keeps memory of the initial corrugation. T
dendrite tips grow faster towards thex direction and grooves
are formed. However, now the interface velocity is low
than the isotherm velocity and steady growth is forbidd
The solidification front accelerates and when the abso
stability limit is reached we observe the transition from de
dritic to planar growth. The process continuously repeats
self; it is worth observing that after the first cycle the de
dritic pattern seems no longer correlated to the init
perturbation.

On the same portion of the computational domain
show in Fig. 6 the contour plot of the concentration field
t51.431022. In order of decreasing darkness the four zon
represent values of the solute concentrationc<0.116,
0.116,c<0.118, 0.118,c<0.120, and c.0.120. The
banded structure of the solidified alloy here is clearly rec
nizable. A comparison with Fig. 5 indicates that plan
growth corresponds to microsegregation-free regions, w
the solute concentration near the nominal concentration

FIG. 4. Periodic variation of the total growth rate versus tim
for the two-dimensional solution of the phase-field model. The i
tial perturbation of the planar front fixes the origin of the time ax
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6106 PRE 58MASSIMO CONTI
the alloy. The transition to dendritic growth results in
irregular solute distribution with regions where solute is a
cumulated, corresponding to the grooves of the solidificat
pattern.

A more detailed analysis of the front dynamics is allow
by observing Fig. 7, where the radius of curvature and
velocity of the tip located aty51.384 are followed along the
third cycle and represented versus the interface position.
fast growth of the dendrite tip corresponds to the decreas
the tip radius at the beginning of the cycle; then the interf
is restabilized and the radius of curvature diverges. When
interface velocity reaches its minimum a new tip is forme
inspection of Fig. 5 confirms that the new dendrite is ch
acterized by a much smaller radius of curvature. The perio
breakdown between dendritic and planar growth is the b
of the phenomenological model proposed by Carrardet al.
@10# to explain the emergence of the banded structure. Th
authors assume that during the high-velocity section of
cycle the velocity and temperature of the planar front evo
along the stable branch of the steadyTI(v) curve shown in
Fig. 2.TI increases andv decreases: When the maximum
the curve is reached planar growth is no longer possible
the up-sloping branch corresponds to unstable solutio
Then it is assumed that the front velocity changes insta
neously and the operating point is shifted to a steady d
dritic branch, with a much lower velocity. NowTI decreases
and v increases as the dendritic branch is down sloping
the (TI ,v) plane@10#. In this section of the cycle the velocit
of the dendrite tips is lower than the isotherm velocityV0 :
The interface undercooling increases until with an instan

FIG. 5. Dynamical evolution of the solidification pattern. Th
curves represent 100 different snapshots of the solid-liquid inter
taken at equally spaced instants of time; the first and the last cu
from the bottom are taken att51.431024 and 1.431022, respec-
tively. To focus on the two-dimensional dynamics only a section
the computational domain is represented, fromx5x* 20.16 ~the
zero of the vertical axis! to x5xm .
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FIG. 6. Contour plot of the concentration field att51.4
31022. In order of decreasing darkness the four zones repre
values of the solute concentrationc<0.116, 0.116,c<0.118,
0.118,c<0.120, andc.0.120. The portion of the computationa
domain represented in this figure is the same as in Fig. 5,
x* 20.16<x<xm , 0<y<ym .

FIG. 7. Tip velocity ~solid line! and tip radius~dotted line!
versus thex coordinate of the tip position along the third cyc
described by the solidification process. The zero of thex axis is
chosen atx5x* 20.16, following the same convention as in Fig.
the tip of the dendrite is located aty51.384.
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neous transition the operating point reaches the high-velo
planar branch and the cycle repeats itself.

The main qualitative aspects of the above picture are c
firmed by the results of the present simulations. We detec
also significant deviations, which will be illustrated in th
following. In Fig. 8 we represent in the (T,v) plane the cycle
followed by the tip temperature versus the tip velocity. F
the reader’s commodity we also superimpose theTI(v)
curve for planar growth obtained with the one-dimensio
simulations. At low velocities the interface develops the d
dritic pattern and cools down. Then the orbit traverses
steadyTI(v) curve at pointA, where the front velocity is no
far from V0 and with a strong acceleration reaches poinB
located on the stable branch; the dendritic pattern is s
pressed and the front is restabilized. Here the interface
locity is higher thanV0 and the interface warms up; solid
fication is decelerated and the process evolves towards p
C, where the planar front again breaks into dendrites. T
orbit shows a regular shape and we cannot detect insta
neous transitions of the front velocity~which should be rep-
resented by horizontal jumps at constant temperature!. More-
over, at high velocities, along the down-sloping portion
the cycle, the orbit substantially diverges from the stea
TI(v) curve. These discrepancies trace their roots to the
fuse interface characteristic of the phase-field model. Car
et al. assume an instantaneous relaxation of the solute

FIG. 8. Orbit followed by the tip temperature and velocity in t
(T,v) plane ~solid dots!, along the first cycle of the process. Th
dendrite tip is the one located aty51.24. The solid line refers to the
steady solution of the present model. The vertical line represent
pulling velocity V0 . The meaning of the pointsA,B,C is illustrated
in the text.
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across the interface to the steady configuration; actually,
relaxation time is of the order oft;a/vd , a being the inter-
face width, and the approximation works only when the tra
sient characteristic time is much larger thant ~or the char-
acteristic frequency is much smaller than 1/t!. In the process
under considerationt is of the order of 1023 and the fast
transients shown in Fig. 4 exhibit Fourier components co
parable to 1/t; then the full time-dependent dynamics d
scribed by the present model deviates from the prediction
the quasisteady approximation.

V. CONCLUSIONS

In summary, we used the phase-field model to analyze
emergence, the formation, and the characteristics of
banded structures observed in rapidly solidified alloys. T
main results of this study show the following.

~i! The oscillatory instability of the solidification front
due to the nonmonotonic dependence of theTI(v) curve,
actually leads, in a nonlinear regime, to periodic variations
the interface velocity and temperature, reflecting in perio
structures of the solidified alloy.

~ii ! A periodic breakdown of the planar front during th
low-velocity section of the cycles originates a dendritic p
tern that is responsible for the formation of the dark ban
The light bands are the result of a restabilization of the p
nar front at high velocities. In this respect our results ag
with the predictions of the phenomenological model of C
rard et al. @10#.

~iii ! The phase-field model accounts for the full tim
dependent interface dynamics. In contrast, the free-boun
approach is based on a quasistationary model of the inter
boundary conditions and fails to describe accurately the
transients characteristic of the band formation.

Due to numerical tractability, in this study we neglect
the latent heat released at the solid-liquid interface, assum
an infinite thermal diffusivity. As shown by Karma an
Sarkissian@13#, relaxing this approximation leads to an in
crease of the effective temperature gradient probed by
advancing front and to a reduction of the parameters ra
where the oscillatory instability should be expected; nonet
less, the basic mechanism underlying the formation of
banded structures should have been properly evidenced
view of future extensions and refinements in this subject,
worth noting that the phase-field model allows an easy
scription of rapid solidification processes even for conc
trated solutions, with no limitations due to the actual sha
of the alloy phase diagram, while at present the fre
boundary approach can be applied only to very dilute so
tions, when the alloy phase diagram can be convenie
linearized.
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