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Transition from dendritic to planar growth and banded structure formation
in rapidly solidified alloys
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To study the formation of the so-callésinded structureswve simulated the rapid directional solidification
of a binary alloy in two dimensions using the phase-field model. We found that an oscillatory instability of the
solidification front, driven by the loss of interfacial equilibrium, forces the interface velocityd temperature
T, to describe an orbit in theT( ,v) plane. In the low-velocity portion of the cycle the planar front breaks into
a dendritic pattern, resulting in a strong solute microsegregation. As a consequence, the solidified region shows
a highly irregular solute distribution. At high velocities the dendritic pattern is suppressed and the solid phase
grows with uniform composition. Due to the fast transients of the process our results, which reflect the full
time-dependent interface dynamics, show only a qualitative agreement with the phenomenological model of
Carrardet al. [Acta Metall. Mater.40, 983 (1992], which is based on a quasistationary approximation.
[S1063-651%98)00111-1

PACS numbgs): 81.10.Aj, 05.70.Ln, 64.70.Dv

[. INTRODUCTION merical simulations, conducted in one dimension with both
the Green’'s functions techniquel3] and the phase-field
In rapidly solidified alloys, at growth rates close to the model[14], showed that the oscillatory instability actually
absolute stability limit, a different and unexpected micro-leads, in a nonlinear regime, to time-periodic changes in the
structure has been observed, consisting of alternating dafRterface velocity and interface temperature, which reflect in
and light bands parallel to the solidification front. In this Periodic variations of the solute concentration along the
so-calledbanded structur¢1—4] the dark bands are formed growth direction. _
of periodic cells or dendrites, growing antiparallel to the heat While the periodicity of the banded structure is clearly
flux direction. At eutectic composition, the typical lamellar related to the oscillatory instability of the solidification front,

structure has also been observed. The light bands show;fg etﬁp'a”? the emergte_nce r?f a otlerydtr_ltlc pfa;crt]err:j, risgonc?lble
uniform composition, equal to the nominal concentration of or the microsegregation charactenstics of the dark bands, a

: ider perspective was required and the problem had to be
the alloy. The total band spacing ranges from 0.3 tound Wi . . . i
The physical origin of the banded structures represented %ddressed atleast in two dimensions. Caredrall. [10] pro

LT . osed a phenomenological model describing the formation of
intriguing problem that remained unsolved for several Y€arSine panded structure as a periodic breakdown between den-
as they were not expected within the classic Mullins-Sekerk

, S ‘ €TKritic and planar front growth. As they observed, in a range
analy_5|s[5]. Det_:lswe progress was ach!eved when the lineags i \rerfacial temperatures rapid solidification can proceed in
stability analysis was revisited by Coriell and Sekefk&  giaple and steady conditions at two distinct velocities, corre-
To account for nonequilibrium effects such as solute traPSponding to the dendritic branch of the diffusional model
ping at the moving interface, they introduced a velocity-(jower valug and to the planar growth bran¢higher valug.
dependent segregation coefficid{t), defined as the ratio At intermediate velocity values the driving force for solidi-
cs/c, of the solute concentration in the growing solid to thatfication (the dynamic undercoolings a decreasing function

in the liquid at the interface. Subsequently, Merchant andf the associated flughe growth ratg resulting in unstable
Davis [7] incorporated into the problem the results of theplanar solutions. When the isotherm velocity is fixed in this
continuous growth model of Azii8] and Aziz and Kaplan region steady growth is prevented and the solidification front
[9], allowing the segregation coefficiektand the interface undergoes periodic transitions between the planar and den-
temperatureT, to depend on the interface velocity in a  dritic branches. Starting from the above considerations, the
thermodynamically consistent way. These studies led to thauthors estimated the width of the dark and light bands and
identification of an oscillatory instability characterized by antheir predictions were in agreement with the experimental
infinite wavelength along the solid-liquid front; it was argued data. However, detailed information on the time-dependent
that this instability should be responsible for the band formadynamics of the solidification pattern, which results in the
tion [10]. The approach to the problem was refined by Hunt-formation of the banded structure, is still lacking.

ley and Davig11] and Karma and Sarkissidf2], who re- In the present study the rapid solidification of a binary
laxed the hypothesis of infinite thermal diffusivity and alloy, driven by a moving temperature field, is simulated in
accounted for the effects of the latent heat diffusion. Thewo dimensions through the phase-field model. Due to nu-
most relevant results they achieved evidenced a reduction afierical tractability, the effect of the latent heat diffusion is
the parameters range where the oscillatory instability shouldieglected; nevertheless, we hope to capture the most relevant
occur; moreover, the release of the latent heat at the interfaaharacteristics of the process. In a region of the parameters
drives a restabilization mechanism at zero wave number. Nuspace the oscillatory instability of the solidification front
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forces the interface velocity and temperature to follow awhile the nonconserved dynamics of the phase figlds
cycle in the T, ,v) plane. In the low-velocity portion of the expressed through
cycle the planar front breaks into a dendritic pattern, result-
ing in strong and irregular solute microsegregation. At high : oS
velocity the process enters the absolute stability region and $=M, % ®)
the dendritic pattern is suppressed: As a consequence, the
solid phase grows with uniform composition. The results ofwhereM, andM » are positive constants.
our simulations show a qualitative agreement with the pic-  Assuming a double-well Ginzburg-Landau free energy for
ture of the process given by Carratlal. [10]; however, we  the pure constituents and evaluating the functional deriva-
detected also significant deviations whose origin will be anatives gives
lyzed and discussed.

The scheme of this paper is as follows. In Sec. Il the b oo ~ ~
governing equations of the model will be presented. In Sec. =Myl V¢—(1-Cc)H (¢, T)—cH (4, T)], (6)
[l details of the numerical method will be given. In Sec. IV
the results of the numerical simulations will be presented and Jo o B
discussed. The conclusions will follow in Sec. V. i —V-iD.(1-c) ﬁm [HA(¢, T)—HB(#,T)]V

Il. PHASE-FIELD MODEL

Um ~
—DVc+D.ec(l—c) = TI'(o, T)VT. 7
The directional solidification of an ideal solution of com- ¢ €l ) R (¢.T) @)

ponentsA (solven) and B (solute is described in terms of

the scalar phase field, the local solute concentratianand  In Egs.(6) and(7) Ris the gas constant ang, is the molar
temperaturel. The field ¢ is an order parameter assuming volume. D. is the solute diffusivity defined asD.
the values¢=0 in the solid andp=1 in the liquid; inter- =(M_.R)/[vnc(1—c)]. The functionH*(¢,T) is defined as
mediate values correspond to the interface between the two

phases. The model is developed starting from an entropy ~ dGA(¢) dp(¢) ,T-TA
formulation[15] and follows the lines suggested by Wheeler, H($,T)= do - do TT7A ®)
Boettinger, and McFaddeli6,17), Caginalp and Xig 18],

and Caginalp and Jong$9]. A similar version was the basis \nere

of previous numerical studies conducted in both one and two

dimensiong 20—-23. Full details of the derivation are pre- GA(¢):%\7VA¢2(1_¢)2:\7VA9(¢) 9)
sented elsewherg24] and for the sake of conciseness we

shall give below only a short review. As a starting point an;g 4 symmetric double-well potential with equal minima at

entropy functional is defined as #=0 and 1, scaled by the positive well heigh®. LA and

&2 TA are the latent heat per unit volume and the melting tem-
Szf s(e, ¢,0)— = |V ¢|?|dv, (1)  perature of the pure componeA{ choosing the function
2 p(¢) as p(¢)=¢3(10-154+6¢2), the condition is en-

forced that the bulk solid and liquid are described by

where integration is performed over the system volume. Th%:0 and 1, respectively, for every value of temperature

last term in the integrand is a gradient correction to the ther[25]

modynamic entropy density which depends on the internal Equations(8) and (9) still hold for ﬁB(qB,T) and G®(4)

energy densitye and on the concentration and phase fields. . ; .
througgyh the thfrmodynamic relations P if all the material parameters labeled with the supersdkipt

are replaced with the ones related to Bispecies. The func-
gs 1 a9s wuh—uB tion I'(¢,T) is defined as

e T ¢ T

2 T =22
s 19 A 5 T
9b fﬁ[(l cju"+eu”l,

(LA-LB). (10

To allow for different diffusivities in the solid and liquid
tphases in the followingD. will be taken asD.=Dg
+p(¢)(D,—Dy), D, and D¢ being the diffusivities in the
ﬁquid and in the solid, respectively.

As we neglect the latent heat diffusion, the temperature

t=-V.J 3) field is decoupled from the phase and concentration fields
- _ . :

and is represented as a traveling wave moving towards the

To ensure that the local entropy production is always posiPositive x direction with uniform gradienG and constant

whereu” and 1B are the chemical potentials of the solven
and the solute, respectively. A conservation law governs th
solute transport

tive, the solute flux can be written in a simple form as velocity Vg
v S aT v aT e 11
I=MV ., @ — = Vo =—VG. (11)
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Equationg6), (7), and(11) will be rephrased scaling lengths

to some reference lengthand time to£?/D, . Allowing Mf
to depend on the local composition &8,=(1-c)M},

+cM5 and following the lines suggested by Warren and Melting temperaturék)
Boettinger[20] to associate the model parameters with the | sient heatJ/cn?)

material properties, the governing equations become

d¢

E=[(1—c)mA+cmB]

X[VZ¢+(1-c)QNT,¢) +cQ¥(T,¢)], (12

Jc
= VAN Ve—c(L-NSHAS.T)—H(¢,T)]

XV¢—c(l—c)\(H)T (¢, TIVT}, (13)
aT T
—r=—Vo - =—VG, (14)

where

HAB(¢, T)=WAB M_ LAB Um dp(¢) T—TAB

do¢ R d¢ TTAB
Um ~
"R HAB(¢,T), (19
& dg(¢)
A,B - _ > "7
Q™(¢,T) TERT,

1 §2LA'B T_TA,B dp(¢)
YerormeE T, ag O
r(eT)=2 T, @
Dy ( Ds)

k(¢)—5|+p(¢>) 1—5 : (18
~ & ~
|

In Eq. (16) B h”B indicate the surface tension and the

interface thickness of the pure componeatandB, respec-

tively. T, is the initial (equilibrium) interface temperature.
The model parametens® WAB depend on the physical

properties of the alloy components through
ﬁA,Ba_A,BTA,B A,B

12vy o

"= R TEE 20

mAB=

where 8B is the kinetic undercooling coefficient of pufe

or B, which relates the interface undercooling to the interface

velocity v throughv = gAB(TAB-T)).
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TABLE |. Material parameters for the Si-Ge alloy.

Parameter Silicon Germanium
1693 1218
4208 2698
Molar volume (cm*mole2 12.02 13.64
D, (cn¥/s) 1075 1075

@An average value of 12.96 has been taken.

dencee(6)=e(1+y cos ¥)=en(6), enforcing a fourfold
symmetry;y specifies the intensity of the anisotropy. Equa-
tion (12) is modified as

d¢

Ez[(l—c)mAﬂLcmB]

2 J ’ (9¢
VL0V 81+ o w00 (0) 5

J ¢
—3—)((77(6’)77(0) W)

+(1—C)QA(T,¢)+CQB(T,¢)J- (21)

To conduct the numerical simulations we referred to the
phase diagram of an ideal solution of silicésolven) and
germanium(solute, using the data summarized in Table |
and the solute diffusivity in the solid phase was estimated as
D,=10"°xD,. However, due to limitations of computa-
tional resources, we were forced to use some approximations
elucidated below.

In two dimensions the numerical cost of the solution is
dramatically dependent on the interface thickness, increasing
ash™*. In this study, along the lines suggested by Wheeler,
Murray, and Schaefef26] and Caginalp and Socolovsky
[27], the value selected for the interface thicknesé'§
=4.2x10 ¢ cm) is small compared to the lowest geometric
scale that characterizes the process, namely, the radius of
curvature of the dendrite tip and, nevertheless, more than 10
times greater than the actual values.

As the diffusivities of the phase and the concentration
fields are quite different, Eq$13) and (21) should be dis-
cretized with different resolution in the time domain, with
the finer grid fixing the numerical cost. To overcome this
difficulty and to allow a coarser time grid, we decided to
reduce the diffusivity of the phase field in E@1), choosing
for BB values about 10 times lower than realistic ones,
namely,3A=13.48cm s'K 1 andB8=16.91 cms*K L
Fixing the surface tension as”=3.949<10 ° J/cn? and
oB=2.806<107° J/en? and with a length scalg=2.1
X104 cm, the model parameters becomé'=0.073 51,
WB=0.072 62, andn*=mPB=21.416.

Ill. NUMERICAL METHOD

Anisotropy of surface energy can be accounted for by Equations(13), (14), and (21) have been solved in the

allowing the parametesto depend on the angl defined as

computational domain €x<x,,, 0<y=sy,, with x,

the angle between the normal to the interface and a fixeer 7.16 andy,,=2.40. For the phase and concentration fields
direction, thex axis in our calculations. We assume a depen-we imposed cyclic boundary conditionsyat 0, y,, and flux-
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less conditions ak=0, x,,. Transparent conditions were 1.00
chosen for the temperature &0, X,,. An explicit Euler
integration scheme was employed to advance the solution
forward in time and second-order central differences were 090
used to discretize the Laplace operator. To ensure an accu-
rate resolution of both the phase and the concentration pro-
files the grid spacing was selecteds=Ay=8x 103 and
a time stepAt=3.5x10"’ was required for numerical sta-
bility. The process was followed up to a timeg,,~=14
X 1073, resulting in 40 000 time steps for each simulation. It
required more than 24 h on a workstation with a single pro-
cessor operating at about 30 Mflops. To verify the consis-
tency of the numerical scheme, at each time step the solute 0.60 -
conservation was checked and in all the simulations was
verified within 0.01%. The initial temperature profile is de-
fined as 0.50 . ' : : : : :
0 100 200 300 400 500 600 700 800

T(x,0) =?| +G(X—Xq). (22 interface velocity

partition coefficient

FIG. 1. Partition coefficienk(v) for the one-dimensional solu-
tion of the phase-field modétioty and as predicted by the continu-
ous growth model wittk,=0.398 andv 4= 34 (solid line).

A phase boundary at temperaturgseparates a solid region
(x<Xq, =0, c=c_,) from the liquid region x>Xxq, ¢
=1, c=c,.); the initial concentration values in the two
phases correspond to equilibrium B&T,. Then the tem-
perature profile is pulled towards the positixedirection
starting solidification. As the process enters the oscillatory Ke+v/vg

regime, a periodic corrugation is forced at tirtie on the k(v)= ——. (23
planar interface located at(y,t*)=x*; the corrugation, of
the form x;(y,t*)=x* + A sin(2afyly,,), with A=0.05 and
f=186, is sufficient to activate the two-dimensional dynamics,
and the banded structure formation.

limit of very dilute solutions, which give

Herek, is the equilibrium segregation coefficient amglis a
diffusional velocity given by y=D/a, D being an interface
diffusivity and a the width of the phase transition layer. The

IV. FRONT DYNAMICS best fit was found avy=34, which is a reasonable value
AND BANDED STRUCTURES FORMATION: referring to the actual values of the interface solute diffusiv-
RESULTS OF THE NUMERICAL SIMULATIONS ity and interface thickness.

In Fig. 2 we show the dependence of the interface tem-
perature on velocitysolid circles along with the results of
The loss of interface stability is expected when the isothe continuous growth modésolid line) expressed by
therm velocity is fixed in the region of positive slope of the

T,(v) curve, corresponding to the unstable planar growth
branch. Then, to determine the range of parameters where
bands formation could occur, we characterized the one-
dimensional dynamics of the process.

The initial concentration of the alloy was set to .,
=0.046 842 in the solid phase amd ,,=0.117 54 in the
liquid phase, corresponding to an equilibrium temperature
T,=1660 K. To force steady growth we fixed the tempera-
ture gradient just above the stability limit, determined em-
pirically for each simulation. In these conditions, after an
initial transient, solidification proceeded at a constant rate
and with uniform concentration. ., in the solid phase. The
solute segregation on the moving front was evaluated by
computing the minimum and maximum valug, c{* of the
solute concentration across the interface and defining the par-
tition coefficient ask(v)=c%/c{ and the interface tempera- 1632 . . ! . . . .
ture was determined by interpolating the temperature field at 0 100 200 300 400 500 600 700 800
X(¢$=0.5¢).

Figure 1 shows the partition coefficient versus the growth
velocity v. The solids circles refer to the results of the  FIG. 2. Interface temperature versus interface velocity for the
present simulations, while the solid line is drawn accordingone-dimensional solution of the phase-field moits and pre-
to the predictions of the continuous growth model in thediction of the continuous growth modéolid line).

A. One-dimensional solution of the model

1642

1640

—_

f=y

O

)
T

interface temperature
o
o
L=}
T

1634

interface velocity
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FIG. 3. Periodic variation of the interface velocity versus time  FIG. 4. Periodic variation of the total growth rate versus time
for the one-dimensional solution of the phase-field model. for the two-dimensional solution of the phase-field model. The ini-
tial perturbation of the planar front fixes the origin of the time axis.

mC v Solidification proceeds characterized by large and peri-
-k, {1—k+[k+(1-Kk)x]In(k/ke)}— Br odic variations of the total growth rate, as shown in Fig. 4. It
(24) is worth observing(see Fig. 3 for a comparisprihat the
oscillatory dynamics is essentially the same in one as well as
] ] ] o o in two dimensions, with the same period of the oscillations;
wherem, is the slope of thélinearized equilibrium liquidus e only significant difference we could detect is the slight
line. The parametey, ranging from O to 1, describes the fjyctyation of the amplitude of the peaks in the two-
extent of free-energy dissipation due to solute drag across thmensional solution.
interface[28]. With my=—280.7 the curve is drawn choos-  Eigyre 5 is the space-time portrait of the solidification
ing x=0.65. We found that the descending branch of theygnt ™ which is identified atZ(y,t)=x(¢=0.5y,t). We
curve better fits the phase-field results with an undercoolingpo 100 snapshots df(y,t) equally spaced in time; the
coefficient 8*=10 slightly lower than the nominal value first and the last curves from the bottom are takeh-at.4
B*=13.48. Notice that Eq(24) is obtained starting from a x10~* and 1.4<10°2, respectively. To focus on the two-
linearized phase diagram and in the limit of low solute con-gimensional dynamics we represent, along xheirection,
centration, so we do not expect a sharp agreement betwe%y;x“y a section of the computational domain, from: x*
the two sets of data. —0.16 (the zero of the vertical scaléo x=x,,. The initial
The positive slope branch of thi&(v) dependence ex- nerqyrbation is injected in the high-velocity portion of the
tends up ta =300, where the maximum is found. Choosing cycle and, as shown by the figure, is rapidly reabsorbed. The
the isotherm velocityV, in this region and a temperature jnterface slows down and planar growth proceeds until, near
gradient below the stability limit should result in an oscilla- the minimum of the interface velocity, the front breaks into a
tory dynamics of the solidification front. This prediction is pattern that still keeps memory of the initial corrugation. The
confirmed in Fig. 3, where the interface velocity is repre-gengrite tips grow faster towards thelirection and grooves
sented versus time fofo=247.5 andG=10 K; the process gre formed. However, now the interface velocity is lower
never reaches a steady regime and the interface velocity COfan the isotherm velocity and steady growth is forbidden:
tinuously oscillates around the average valle The solidification front accelerates and when the absolute
stability limit is reached we observe the transition from den-
dritic to planar growth. The process continuously repeats it-
self; it is worth observing that after the first cycle the den-
dritic pattern seems no longer correlated to the initial
To investigate the growth of the banded structure, follow-perturbation.
ing the indications of the previous results, we fix the same On the same portion of the computational domain we
operating point, i.e.c,,,=0.117 54,c_,,=0.046 842, T, show in Fig. 6 the contour plot of the concentration field at
=1660 K, Vy=247.5, andG=10 K. The anisotropy param- t=1.4x10 2. In order of decreasing darkness the four zones
eter is selected ag=0.04. The perturbation is injected on represent values of the solute concentratios0.116,
the planar front after the first peak of the interface velocity at0.116<¢<0.118, 0.118c¢=<0.120, and ¢>0.120. The
t*=1.82< 10 2, with the front located at* =2.52. Asitis  banded structure of the solidified alloy here is clearly recog-
the beginning of the two-dimensional dynamics in which wenizable. A comparison with Fig. 5 indicates that planar
are now interested, henceforth the zero of the time axis wilgrowth corresponds to microsegregation-free regions, with
be shifted at*. the solute concentration near the nominal concentration of

T (v)=TA+

B. Two-dimensional dynamics: Transition to dendritic growth
and banded structure formation
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sy

0.0 0.8 1.6 2.4

FIG. 5. Dynamical evolution of the solidification pattern. The
curves represent 100 different snapshots of the solid-liquid interface
taken at equally spaced instants of time; the first and the last curves
from the bottom are taken &t 1.4x 10 * and 1.4 102, respec-
tively. To focus on the two-dimensional dynamics only a section of
the computational domain is represented, framx* —0.16 (the
zero of the vertical axisto X=X, .
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FIG. 6. Contour plot of the concentration field at1.4
X102, In order of decreasing darkness the four zones represent

the alloy. The transition to dendritic growth results in anVvalues of the solute concentratior<0.116, 0.116:c<0.118,
iregular solute distribution with regions where solute is ac-0-118<¢=<0.120, andc>0.120. The portion of the computational

cumulated, corresponding to the grooves of the solidificatioriomain represented in this figure is the same as in Fig. 5, i.e.,
X* —0.16SX<Xp, O<y=<y,,.

pattern.

A more detailed analysis of the front dynamics is allowed
by observing Fig. 7, where the radius of curvature and the
velocity of the tip located ay =1.384 are followed along the
third cycle and represented versus the interface position. The
fast growth of the dendrite tip corresponds to the decrease of
the tip radius at the beginning of the cycle; then the interface
is restabilized and the radius of curvature diverges. When the
interface velocity reaches its minimum a new tip is formed,;
inspection of Fig. 5 confirms that the new dendrite is char-
acterized by a much smaller radius of curvature. The periodic
breakdown between dendritic and planar growth is the basis
of the phenomenological model proposed by Carretrdl.

[10] to explain the emergence of the banded structure. These
authors assume that during the high-velocity section of the
cycle the velocity and temperature of the planar front evolve
along the stable branch of the stealjv) curve shown in

Fig. 2.T, increases and decreases: When the maximum of
the curve is reached planar growth is no longer possible, as
the up-sloping branch corresponds to unstable solutions.
Then it is assumed that the front velocity changes instanta-
neously and the operating point is shifted to a steady den-
dritic branch, with a much lower velocity. NoW, decreases

tip position

$00.0 1.20
600.0 | 1 090
z o
R3] ks
< 4000 4 060
g -t
g Z

i)
2000 | 4 030
1\\
0.0 L L 0.00
1.8 2.0 22 24 2.6

FIG. 7. Tip velocity (solid line) and tip radius(dotted ling

andv increases as the dendritic branch is down sloping inersus thex coordinate of the tip position along the third cycle

the (T, ,v) plane[10]. In this section of the cycle the velocity
of the dendrite tips is lower than the isotherm velodity:

described by the solidification process. The zero of thexis is
chosen ak=x* —0.16, following the same convention as in Fig. 5;

The interface undercooling increases until with an instantathe tip of the dendrite is located gt=1.384.
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1642 across the interface to the steady configuration; actually, the
relaxation time is of the order af~a/vy, a being the inter-
face width, and the approximation works only when the tran-
sient characteristic time is much larger tharfor the char-
acteristic frequency is much smaller tham)1in the process
under consideratiorr is of the order of 10 and the fast
transients shown in Fig. 4 exhibit Fourier components com-
parable to 1# then the full time-dependent dynamics de-
scribed by the present model deviates from the predictions of
the quasisteady approximation.

1641

interface temperature
>
N
[
T

1639 |
V. CONCLUSIONS

In summary, we used the phase-field model to analyze the
1638 . . L ; . . . emergence, the formation, and the characteristics of the
0 100 200 300 400 S00 600 700 800 banded structures observed in rapldly solidified alloys. The
main results of this study show the following.
(i) The oscillatory instability of the solidification front,
FIG. 8. Orbit followed by the tip temperature and velocity in the due to the nonmonotonic dependence of Thév) curve,
(T,v) plane(solid dotg, along the first cycle of the process. The actually leads, in a nonlinear regime, to periodic variations of
dendrite tlp is the one |Ocatedﬁi= 1.24. The solid line refers to the the |nterface Veloc|ty and temperature' reﬂec“ng |n perlodlc
stea_ldy soluti_on of the present _model. The v_ertical Ii_ne_ represents thg,ctures of the solidified alloy.
pulllng velocity V. The meaning of the point&,B,Cis illustrated (i) A periodic breakdown of the planar front during the
in the text. . . . .
low-velocity section of the cycles originates a dendritic pat-
tern that is responsible for the formation of the dark bands.
neous transition the operating point reaches the high-velocityhe light bands are the result of a restabilization of the pla-
planar branch and the cycle repeats itself. nar front at high velocities. In this respect our results agree
The main qualitative aspects of the above picture are conwith the predictions of the phenomenological model of Car-
firmed by the results of the present simulations. We detecterhrd et al. [10].
also significant deviations, which will be illustrated in the (iii) The phase-field model accounts for the full time-
following. In Fig. 8 we represent in thd (v) plane the cycle dependent interface dynamics. In contrast, the free-boundary
followed by the tip temperature versus the tip velocity. Forapproach is based on a quasistationary model of the interface
the reader's commodity we also superimpose Wév) boundary conditions and fails to describe accurately the fast
curve for planar growth obtained with the one-dimensionaltransients characteristic of the band formation.
simulations. At low velocities the interface develops the den- Due to numerical tractability, in this study we neglected
dritic pattern and cools down. Then the orbit traverses thehe latent heat released at the solid-liquid interface, assuming
steadyT,(v) curve at pointA, where the front velocity is not an infinite thermal diffusivity. As shown by Karma and
far from V, and with a strong acceleration reaches p@nt Sarkissian13], relaxing this approximation leads to an in-
located on the stable branch; the dendritic pattern is superease of the effective temperature gradient probed by the
pressed and the front is restabilized. Here the interface veadvancing front and to a reduction of the parameters range
locity is higher thanVy and the interface warms up; solidi- where the oscillatory instability should be expected; nonethe-
fication is decelerated and the process evolves towards poifgss, the basic mechanism underlying the formation of the
C, where the planar front again breaks into dendrites. Théanded structures should have been properly evidenced. In
orbit shows a regular shape and we cannot detect instantaiiew of future extensions and refinements in this subject, it is
neous transitions of the front velocifwhich should be rep- worth noting that the phase-field model allows an easy de-
resented by horizontal jumps at constant temperatiere-  scription of rapid solidification processes even for concen-
over, at high velocities, along the down-sloping portion oftrated solutions, with no limitations due to the actual shape
the cycle, the orbit substantially diverges from the steadyf the alloy phase diagram, while at present the free-
T,(v) curve. These discrepancies trace their roots to the difeoundary approach can be applied only to very dilute solu-
fuse interface characteristic of the phase-field model. Carrartions, when the alloy phase diagram can be conveniently
et al. assume an instantaneous relaxation of the solute fieltinearized.
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